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DESIGNS OF EXPERIMENTS AS TELESCOPING SEQUENCES OF BLOCKS 

FOR OPTIMUM SEEKING (AS INTENDED FOR ALLOY DEVELOPMENT) 

by Ar thur  G. Holms 

Lewis Research Center 

SUMMARY 

Box-Wilson methods of design and analysis are proposed for optimum seeking experi- 
ments. These methods begin with a first-order polynomial equation fitted to empirical 
data to predict those modifications that should result in the greatest improvement. The 
predictions are usually tested with new experiments and a new first-order prediction 
equation is fitted. If the vicinity of the optimum has been reached, the response function 
will be curved and a second-order equation is fitted to a much larger experiment. 

Ideally, the designs of the experiments should have two attributes: 
(1) If a minimum experiment to fit a first-order equation has been performed and the 

model is thought to be of doubtful validity, a larger experiment should be performed that 
will contain the earlier experiment as a nucleus. In this way a fftelescopingff sequence 
of experiments might be performed up to the largest size envisioned in Box-Wilson 
methods, namely, the experiment to estimate the full second-order equation. 

(2) The cons ta~ t s  of the larger equations should be estimated without bias by uncon- 
trolled changes that may have occurred in the material or equipment between the perform- 
ances of the experiments. Detailed designs of experiments that possess these attributes 
are presented. 

with four to eight factors. The sizes of the experiments include 8, 16, 32, and 64 treat- 
ments. 

The designs consist of full and fractionally replicated two-level factorial experiments 

I NTRO DUCT ION 

In seeking optimum processing conditions or optimum compositions, investigators in 
many fields of technology find that the experimenting is intrinsically expensive and time 
consuming. For example, a program of high-temperature alloy development consists of 



melting experimental alloys of relatively expensive metals with the use of sophisticated 
equipment (such as vacuum furnaces) followed by the fabrication and long-time testing of 
specimens. The alloys typically contain many constituents, and information on the joint 
effects of changes in the amounts of these constituents can be obtained only from tests of 
a large number of different melts. For this reason and because the process often intro- 
duces large experimental error,  the most reliable of minimum-size statistically designed 
experiments are needed for the economic achievement of valid conclusions. 

A series of small experiments could be performed tofind those conditions (such as 
composition levels of the elements) that would optimize response (achieve maximum 
strength). Methods for designing particularly efficient experiments for this purpose are 
described in reference 1 and are known as Box-Wilson methods. Illustrations of their 
use in alloy development are described in reference 2. 

The Box-Wilson methods assume that the optimum seeking begins with experiments 
chosen to estimate the constants of a first-order equation for the response. This phase 
of the experimenting is called the method of steepest ascents. When the optimum condi- 
tion is approached, the first-order model is no longer applicable, and the constants of a 
second-order model must be estimated from larger experiments. This phase is called 
the method of local exploration. The second-order model contains expressions called 
interactions and they represent the fact that the response to one independent variable has 
become dependent on the level of one or more other independent variables. 

The full factorial experiment whefre the response is observed for all combinations of 
the independent variables provides complete estimates of all possible interactions. How- 
ever, such complete information is seldom required in the method of local exploration, 
and even less information is needed for the method of steepest ascents. For either the 
method of steepest ascents of the method of local exploration, a fraction of the full frac- 
torial experiment might be all that is required, and such a design is called a fractional 
replicate. 

Parts of an experiment are sometimes performed in a sequence over differing time 
segments, over differing batches of raw material, or over differing pieces of equipment. 
These differing conditions are assumed to affect the response from one part to the next 
by amounts that are not readily predicted or controlled; however, the experimental units 
within the part are assumed to be uniform with respect to the conditions. The responses 
to changes between the parts of the experiment are called block effects. Experiments 
that are designed to estimate the constants of the model equation without contamination 
from block effects are called orthogonally blocked designs. .- 

A discussion of preferred designs of experiments for seeking optimum conditions was 
presented by Box and Hunter (ref. 3) in which the use of sequences of blocked fractional 
factorial designs was introduced, but exact details of the combinations of levels of the in- 
dependent variables (treatments) were not presented. A large collection of specified 
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1 
~ ' Standards in reference 4; huwever, it does not discuss the choosing of detailed designs 

, 
1 * 

treatments for blocked fractional factorial designs is given by the National Bureau of 

from reference 4 to meet the objectives of reference 3. As a matter of fact, the require- 
ments of reference 3 seldom lead to designs in reference 4. The designs that should be 
used also depend on the particular situations facing the experimenter in addition to the re- 
quirements of reference 3. 

The purpose of the present report is to furnish designs similar to those in refer- 
ence 4 that will meet the objectives of reference 3 and which will also be appropriate for 
the particular situations occurring in alloy development. Conceivably, many other devel- 
opment situations could lead to the same family of designs. 

The cost of experimental units (melts) in alloy development is very high and their 
number should be minimized. A central feature of the use of blocked designs in optimum 
seeking experiments is that a single block might be used in the method of steepest ascents. 
When the method of local exploration is invoked, the experimenting might be continued by 
using the block already completed as the first block of that series of blocks required for 
the method of local exploration. The present report therefore presents sequences of 
blocked designs such that the first block is an efficient design for the method of steepest 
ascents and such that completion of the blocks will result in an efficient design for the 
method of local exploration. Such sequences will be called telescoping sequences of de- 
signs. Their design has been discussed briefly in reference 5. 

The scope of the investigation has been limited to situations involving four to eight 
factors, and the sizes of the experiments have been limited to 8, 16, 32, and 64 treat- 
ments. 

to the method of local exploration is critical because of greatly increased sizes of experi- 
ments required by the method of local exploration. In essence, the decision requires 
tests of significance for the coefficients estimated in the method of steepest ascents. 
Procedures appropriate to such tests a r e  discussed in references 6 to 9. 

The point at which the decision is made to shift from the method of steepest ascents 

SYMBOLS 

b number of blocks 

E( ) 

g 
h 

value of ( ) if averaged over infinite number of observations 

number of independent variables (factors) 

fractional replicate contains 1/2 times number of treatments performed in full 
two-level factorial experiment 

h 

i index number for trials 
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j, k 

1 

R 

U 

*j 
X.. 4 
Y 

Y 

P 
E 

Ej 
2 

Q 

cp 

index number for independent variables 

g - h  
resolution level 

scale factor (eq. (3)) 

response (dependent variable) 

vector giving levels of x.. i = 1, . . . , n 
9 ’ 

standardized level of 5 defined by eq. (3) 

response (dependent random variable) 

response (observed variate) 

unknown population parameter 

error  

independent variable, j = 1, . . . , g 

j 

varianceof E 

function of independent variables giving E(Y) 

2 ( )  terms in ( )  summed as i varies over 1, 2, . . . , n 
i= 1 

BOX-WILSON M U H O D S  AND BOX-HUNTER DESIGNS 

This section presents a selective review of the Box-Wilson methods of reference 1 
together with a selective review of the Box-Hunter designs of references 3 and 10. An 
extensive bibliography of these subjects is presented in reference 11. This review is se- 
lective in that it presents only those concepts of references 1, 3, and 10 that provide 
background for the contributions of the present investigation, which is discussed in terms 
of alloy development involving four to eight independent variables. 

Model for Response 

Assume that with every observation of response Y there is some er ror  E and, that 
aside from the error,  the response is some unknown function cp of the imposed condi- 
tions t l ,  . . ., 5,: 
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If the error  is averaged over a very large (infinite) number of observations, such 
averaging is represented by E(€) = 0, that is, 

Assume also that the observation e r ror  variance is some constant u2, that is, 

2 2  E(E ) = U  

In g' In some experimentation u2 might not be constant with changes in El, . . . , 
such cases, there often is a transformation of Y that results in approximately constant 
error  variance. For example, if U were time to failure, then in many cases Y = log U 
would have an approximately constant error  variance. 

but unknown function of the variables that can be controlled. 

function is used to predict conditions of the t l ,  . . . , 5 
superior to any already observed. The predictions are then checked experimentally. If 
they are found to be invalid, some new experimentation is performed to improve the ap- 
proximation function. 

The approximating function does not have to provide a map over the entire ranges of 
all the variables. All that is needed is a starting point for the experimentation and a pro- 
cei3iii.e tint will lead thraigh a short s q w n c e  of experiments to a pint at which there is 
high confidence that the optimum is satisfactorily close. 

Equation (1) expresses the belief that the response to  be optimized is some definite 

An approximation to equation (1) is estimated from experiments and the estimating 
that should give a response 

g 

Sequential Experimentation 

Experiments associated with alloy development are usually accompanied by two cir- 

(1) The experimentation is expensive. 
(2) The experimenter has a large body of knowledge that is more or less applicable. 
These two circumstances dictate that the work should proceed by small stages where 

(1) Uses his prior knuwledge to plan the next stage of experimentation 

cumstances: 

the experimenter alternately 
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(2) Performs the experiment and uses the results to revise previously held hypoth- 
eses and then suggests new hypotheses to be tested by appropriate new experi- 
ments 

, 

A variety of useful techniques is needed that consist of 
(1) Efficient strategies of experimentation 
(2) Informative procedures of data reduction so that, at  each stage of the experiment- 

ing, the experimenter wil l  know 
(a) What trends are indicated 
(b) How clearly these trends are distinguished from random er ror  

Notation for Conditions of I ndepe ndent Variables 

Let t l ,  . . . , 5 be the controlled variables. Designate the serial number of each g 
trial and observation by the subscript i, i = 1, 2, . . . , n. Define standard levels for 
the variables by 

j = 1 , .  . ., g 
i = l ,  . . ., 5 i j  - 5 j  x.. = 

sj (3) 

For example, if 5 were percentage tungsten and two levels were investigated 
(e. g., 10 and 20 percent) and if percentage boron t 2  were investigated at two levels 
(0 and 0.4 percent), then 

- 
5 1  = lo + 2o = 15 percent 

2 

- 
O + = 0.2 percent 5 2 =  

inal 
t ion 

For 

The coordinates sl and F2 locate the design center of the experiment in the orig- 
or natural units. The quantity S. is a scale factor that is adjusted so that equa- 

J 
(3) will represent the upper levels with +1 and lower levels with -1. 

x =+1: il 

20 - 1 5 -  +1 - 
5 
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For xil = -1: 

= -1 10 - 15 
5 

For xi2 = +1: 

= +1 0.4 - 0.2 
0.2 

For xi2 = -1: 

= -1 0.0 - 0.2 
0.2 

that is, the scale factors are S1 = 5 and S2 = 0.2. (The design center is at 15  percent 
tungsten and 0.2 percent boron for which xil = 0 and xi2 = 0). 

that on summing over all n conditions (treatments), 
The design of the experiment is required to be balanced. This requirement means 

g x i j  = 0 
i= 1 

for all independent variables, j = 1, . . . , g. 

Model Fitting 

The knowledge gained from the experiments is expressed quantitatively by equations 
with constants that have been fitted to the data. The equations are then used to suggest 
values of the independent mriables that might give responses superior to those already 
observed. The model fitting begins with an attempt to estimate equation (1). If there is 
no prior information about the form it should take, a polynomial approximation is as- 
sumed, because the method of least squares is a highly effective method of fitting poly- 
nomial equations to  empirical data. If prior information justifying some particular func- 
tional form is available, the particular form could be used so that a polynomial equation 
in transformed variables is fitted to the data. In the standardized variables of equa- 
tion (3) the polynomical approximation of equation (1) is 
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+ .  . . 

2 
+ Pg, + Pg& + Pgg$, + 

* 

+P12X1X2 + P  x x + .  . . 13 1 3 

3 3 
+ P1112x1x2 + P1113x1x3 + * 

' 

+ B,,g14 + P l 1 2 9 $ f  + 

+ .  . . (5) 

If the number of variables g is large, the number of terms needed in equation (5) is 
extremely large, especially if the model fitting is to be valid over a wide range of the in- 
dependent variables. The range of the independent variables is assumed to be restricted, 
so that for any one experiment, no terms higher than second degree will be needed: 

E O  = P, + PIX1 + 4 x 2  + * + PCg 

+ .  . . 

+ 0,- 1,  Cg- lXg 
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In other words, the path over which the experimenter travels to reach an optimum 
point might extend over very wide ranges of the independent variables; however, the 
groping along this path proceeds in small stages and some version of equation (6) is newly 
evaluated a t  each stage. 

"One At a Time" Experimenting 

Two strategies for the empirical attainment of optimum conditions are illustrated by 
figure 1. The true response on two variables is shown by the contour lines, but, of 
course, the experimenter begins with essentially no knowledge of these lines. 

The "one at a time" strategy of experimenting is illustrated by the lines with Roman 
numerals in figure 1. At  constant x2, x1 is varied along line I until the maximum of Y 
on line I is attained. At this maximum on xl, the quantity x2 is varied along line 11 to 
find the maximum which occurs at the intersection of lines 11 and ID. This intersection 
is not necessarily the maximum point, but merely the maximum on line II. Only very 
precise experimentation on line III could lead to a new value of x1 at line IV; that is, 
the response is so flat along line III that random er ror  could easily hide the location of 
the t rue maximum along line III. Only very precise experimenting could lead through the 
many cycles of variation of x1 and x2 along lines IV, V, and so forth, .needed to reach 
the true optimum. 

Method of Steepest Ascents 

The method of steepest ascents assumes that the starting point is sufficiently far 
away from the optimum point that the response function is not particularly curved, as at 
A of figure 1. In particular, assume that the response function can be represented by a 
first-order function of the independent variables, so that the response is represented by 
the equation 

For g independent variables there is a need to evaluate (estimate) g + 1 parame- 
ters so that at least g + 1 trials under independent conditions must be performed to give 
that many observations of Y. 

With the assumption that the parameters of equation (7) have been estimated and that 
the linear equation is decided to be adequate, the direction (with respect to the coordi- 
nates, fig. 1) that produces the steepest response of Y can be determined (ref. 12). 
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Assume that this direction is the direction in which the conditions of experimenting are 
changed as indicated by points numbered 1, 2, 3, and 4 of figure 1. 

Elect the maximum point indicated by such a series to be the starting point (design 
center) for a second experiment capable of again evaluating the parameters of equation ('7). 
This usage of equation (7) to determine directions of improved response gives the method 
its name of steepest ascents. Steepest ascents, by itself is obviously self defeating, be- 
cause as the maximum point is approached, the surface curvatures (as at point B of 
fig. 1) will prevent equation (7) from being an adequate approximation to the true surface. 

. 

Decision Making 

The strategy of steepest ascents, in addition to fitting equation (7), must provide ad- 
ditional information that will eventually show that equation (7) is no longer valid. This 
information must come from a few more observations than the minimum g + 1. Each ad- 
ditional observation provides one additional "degree of freedom" and these additional de- 
grees of freedom are used in some sense as a measure of ?%ck of fit. ( (  Methods that 
can be used for testing the validity of equation (7) are discussed in references 6, 7, 8, 
and 9. 

Method of Local Exploration 

If the lack of fit is excessive, appropriate experiments will be needed to evaluate all 
the coefficients of equation (6). For experiments with four to eight independent variables 
(factors), the important designs of experiments are known as the hypercube and the star - 
designs. The terminology used is illustrated by figure 2. If all combinations of all fac- 
tors  are investigated at two levels, there results 2g observations and the experiment is 
called a hypercube design. If 1/2 
is called a fractional replicate. It contains 2g-h observations on independent treat- 
ments. Whereas a severely fractionated two-level fractorial experiment is adequate for 
estimating the coefficients of equation (?), a less severely fractionated (larger) experi- 
ment is needed to  estimate additionally the cross  product coefficients Pij, i f j of equa- 
tion (6). 

The estimation of the coefficients pii of the quadratic terms requires the perform- 
ance of experiments with points on the coordinate axes of independent variables at dis- 
tances p s  from the design center; that is, with coordinates 

h of such treatments are performed, the experiment 

10 



The design is called a star design (fig. 2). If the agmh design is augmented by the 
star design plus at least one additional point at the design center, the composite experi- 
ment becomes efficient for estimating all the parameters of equation (6). (The optimal 
value of ps and the optimal number of center points are discussed in ref. 3). 

With the parameters of equation (6) estimated by the method of least squares, the 
usual mathematical methods can be used to find the point of horizontal tangency. This 
point might be a maximum, a minimum, or a saddle point. If the point of horizontal tan- 
gency is located beyond the range of the conditions of the experiment, the second-order 
model (eq. (6)) is probably not valid for such an extrapolation and new experiments must 
be performed in the direction of the indicated maximum. 

An invaluable aid in drawing conclusions from the fitted equation (6) is the method of 
canonical reduction (refs. 1, 10, and 12). Briefly, the method shows whether the point 
of horizontal tangency is a maximum, a minimum, or a saddle point. For problems of 
more than a few variables, the point of horizontal tangency is usually some kind of saddle 
point from which the experimenter might proceed along one or both of two rising ridges. 
Physical considerations may dictate that only one of the ridges should be followed, but 
otherwise both directions should be explored, because the second-degree equation may 
have oversimplified the true situation. 

Total Box-Wilson Process 

In summary, the total process of Box-Wilson methods, as visualized herein for alloy 
development, is exhibited by figure 3. The existence of experimental error  can lead to 
decision e r ro r s  in answer to the questions, "Is the first-order model adequate?" and 
"Has a true maximum or acceptable solution been attained?" Accordingly, the best 
available statistical techniques should be used at these two branch points. The style of 
the diagram of figure 3 might indicate to some experimenter that his insight and judg- 
ment are to be replaced by a computer. Nothing could be further from the truth. In the 
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terminology of equation (3) it is the experimenter who must decide the following: 

51, 
be added later. The full list of potential factors should be incorporated into the initial 
experiments so that interaction effects among the factors can be observed. Of course, 
any factors that prove to be nonsignificant may be dropped from the investigation at such 
time as their  nonsignificance has been clearly demonstrated. 

(2) He must decide in what way the factors should be varied. For example, if Y 
were the velocity of a fluid, then 5 might be the square root of a differential pressure. 
In other words, the experimenter should attempt to define the 5 so as to achieve a lin- 
ear response of Y on the 5 
times associated with a "diminishing returns" phenomenon so that very small quantities 
of a specific element produce large changes in strength, whereas large quantities produce 
relatively small changes. In such cases, setting 5 .  equal to the logarithm of the per- J 
centage composition might be an advantage. After deciding on what linearizing transfor- 
mation to use, the experimenter would then pick the levels of the variables in the manner 
of equation (3). 

selection of the design center rl, f2, . . . , 
menter chooses the magnitude of the difference between 5 .. and 
the magnitude of the scaling constant S. of equation (3). 

(1) He must decide which factors should be varied. They are then labeled 
* ,  5,. In taking this step, there should be no intention that other variables will 

I 

j 
In alloy development, the element additions are some- 

j *  

(3) He must decide the starting region of experimentation. This is specified by the 

(4) He must decide by how much the factors should be varied; that is, the experi- 

- 

which determines 
9 j' 

J 
After these decisions have been made, the variables are standardized to the x-values 

of equation (3) and such experimental points are included as will satisfy equation (4) to- 
gether with other criteria that have been advanced in reference 3 and in the present inves- 
tigation. 

The question of the location of star points and the question of the number of center 
points is dealt with in reference 3. The present investigation is limited to details of the 
design of the fractional hypercube experiment to estimate the parameters of equation ('7) 
and to details of the enlarged hypercube experiment to estimate the interaction parame- 
ters of equation (6). The use of Yates' method (ref. 12) will be assumed for estimating 
the linear and interaction coefficients. Of course, more sophisticated methods would be 
needed to fit all the coefficients of equation (6) following the acquisition of data corre- 
sponding to the star and center points. 

Two or More Dependent Variables 

Problems involving two or  more dependent variables are reasonably treated by 

~ 
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determining response functions for all such variables. Typically, one of them wil l  de- 
serve to be optimized while the others need merely be controlled. If, for example, the 
dependent variables are rupture life and ductility, the investigator might specify a mini- 
mum ductility and then maximize the rupture life under such a constraint. Contour lines 
of rupture life and ductility plotted on coordinates consisting of the independent variables 
(composition, for example) would show how to reach a condition maximizing rupture life 
at the specified ductility. 

Two or More Maximum Points 

A serious e r ror  could be made in locating the optimum point if the response function 
contained two o r  more significantly unequal maximum points and if these points were suf- 
ficiently distant from each other so that the larger maximum was  not discovered. If the 
possibility of two or more maximum points is suspected from prior physical considera- 
tions, then early experimenting should consist of factorial experiments on more than two 
levels; the experimentation should be on a grid of points spanning the entire range of in- 
terest of the independent variables. Such experimentation would be far more expensive 
than the Box-Wilson experimenting, which only defines a path leading to a single optimum 
condition. 

CRITERIA FOR SELECTING DESIGNS OF EXPERIMENTS 

Telescopi ng Designs 

The experiment used to estimate the coefficients of the first-order model (eq. (7) in 
the method of steepest ascents) might or  might not be large enough to estimate all the 
two-factor interaction coefficients of the second-order model (eq. (6) in the method of 
local exploration). If the factorial experiment was  severely fractionated for the first- 
order model, then additional fractions of the full factorial experiment must be performed 
for the second-order model. As already mentioned, the additional fractions are ideally 
performed as parts of a blocked experiment, which means that the block effects will not 
decrease the accuracy of (will be orthogonal to) the estimates of the first-order and inter- 
action coefficients. When a sequence of orthogonal blocks is designed so that observa- 
tions from the first block may be used to estimate the coefficients of a simple model, and 
then be retained and combined with observations from new blocks so that all acquired ob- 
servations are used cumulatively to estimate models of successively greater and greater 
generality, the blocks will be said to form a telescoping design. 
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The experiments in the method of steepest ascents are typically performed at more 
than one design center before the more elaborate experiments are performed to estimate 
the interactions for the method of local exploration. At any given design center, the ex- 
perimenter seldom has complete prior information as to just which interactions need to 
be evaluated. Economy in the total program is therefore to be achieved if the experi- 
menter can "feel his way" into the more complex models. This is to be done with the 
use of the telescoping sequences of designs. 

. 

Resolution Levels 

The factorial experiment with conditions fixed at just two levels of g independent 
variables (factors) permits the estimation of parameters representing the grand mean 
over the experiment, the first-order effects of the factors, and the results of factors in- 
teracting two at a time, three at a time, and in all combinations up to g at a time. If a 
fraction l/zh of this experiment is performed, not all these parameters can be esti- 
mated. True response functions in physical investigations are typically smooth enough 
that the higher order coefficients of an approximating polynomial may be assumed to be 
negligible over a small enough range of the experimentation. Accordingly, only the lower 

founded with) coefficients of higher order interactions because such coefficients are as- 
sumed to be negligible. 

Let the number of factors in the highest order interaction requiring estimation be e, 
and let the number of factors in the lowest order interaction with which it is allowed to be 
confounded be c; then the required resolution R of the design is defined (ref. 13) to be 

I 

I order coefficients need be estimated; however, they are allowed to be biased by (con- 

I R = e + c  

As a minimum requirement on the first-order experiments, the coefficients will be 
allowed to be confounded with only the coefficients of two-factor or higher order interac- 
tions. This requires that R = e + c = 1 + 2 = 3. A somewhat improved design occurs if 
the first-order coefficients are estimated clear of two-factor interactions. This requires 
that R = e + c = 1 + 3 = 4. 

For the interaction experiments, the estimates of two factor interaction coefficients 
should be allowed to be confounded only with higher order interaction coefficients. This 
requires that R = e + c = 2 + 3 = 5. 

blocked into b blocks such that any one block will provide a design of resolution 3 for 
the first-degree model. As a consequence of this requirement, the experimenter may 

The design of the interaction experiment (of resolution 5) is now specified to be 
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switch at any time from the method of steepest ascents to the method of local exploration 
by completing the b - 1 uncompleted blocks of the resolution 5 experiment. 

Occasions could arise in which the experimenter would not wish to proceed immedi- 
ately from a minimum-size first-order design to the design for estimating all interaction 
coefficients. For example, a design of only eight treatments hardly provides enough in- 
formation to test the validity of the first-order model. The performance of a second 
block of eight treatments could lead to a much better decision. Also, the experimenter 
may have prior knowledge that certain interactions are negligible so that he can stop 
short of the experiment that estimates all two-factor interactions. For these reasons, 
the designs and parameter estimates are given for such intermediate size experiments. 

Number of 
factors 

11 
12 
13 
14 
15 

Sizes of Experiments 

Number of Efficiency 
treatments 

128 0. 52 
256 . 3 1  
256 .36 
256 . 4 1  
256 .47 

The lower limit of the size of the interaction experiment has been set at 16 experi- 
mental units. The presumption is that experiments with less than 16 experimental units 
are too small for any determination of statistical validity. With 16 treatments the 
smallest number of factors in the (efficient) unreplicated experiment is four, and this 
will be the lower limit on the number of factors for which designs will be presented. 

coefficients needing estimation (aside from the grand mean) includes the g first-order 
coefficients and the g(g - 1)/2 two-factor interactions for a total of g(g + 1)/2. The 
number of treatments is 2g-h and subtracting one degree of freedom for the grand mean, 
the number of degrees of freedom available for estimating these coefficients is 2g-h - 1. 
The ratio of the number of coefficients estimated to the available degrees of freedom has 
been defined by Daniel (ref. 5) as the efficiency c?f the desip-: 

For the interaction experiment, the number of first-order and two-factor interaction 

Number of 
factors 

5 
6 
7 
8 
9 

10 

Efficiency = g k  + 1) 
2(2g-h - 1) 

Number of Efficiency 
treatments 

16 1.00 
32 .68 
64 . 4 4  
64 .56 

128 .35  
128 .43  

As given in reference 5, the efficiency of minimum size resolution 5 designs varies 
with the number of factors as follows: 
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The 2g-h designs possess the desirable properties of rotatability and orthogonal 
estimates of first-order and two-factor interaction coefficients as discussed in refer- 
ence 3. These properties can reasonably be insisted upon where the number of treat- 
ments is not excessive (64 or less) and where they are being effectively utilized. 
preceding table shows generally low efficiencies for 2g-h designs of resolution 5 for 
nine or more factors). The use of more efficient designs for nine or more factors is 
highly desirable and the resulting sacrifice of rotatability and orthogonality might be tol- 
erable because the number of treatments would still be quite large. Such designs are 
discussed in reference 14 and also in reference 15. The present investigation is limited 
to the 2g-h designs of resolution 5, and as indicated by the preceding discussion, such 
designs a re  appropriate for situations involving up to eight factors. The largest number 
of treatments is therefore limited to 64. 

The preceding limitation to experiments with 16 to 64 treatments does not count the 
star and the center points used in estimating the coefficients of the quadratic terms. The 
number of such experimental units depends on the 'criteria used to decide the number of 
center points, but with g factors, the number of these extra experimental units is rela- 
tively small, being only slightly in excess of 2g + 1. 

The fractional factorial first-order experiment on four factors requires a minimum 
of eight treatments, whereas the fractional factorial first-order experiment with eight 
factors requires a minimum of 16 treatments. Correspondingly, the sizes of the blocks 
are limited to 8 and 16 treatments. 

(The 

The Principal Block 

In some cases the experimenter will prefer to incluc2 a condit-an that he calls 
"standard conditions" in the first block of a blocked experiment. Typically, an experi- 
menter would choose to have all independent variables at their low levels. In any event, 
the experimenter is free to invert scales so that the treatment he elects as standard con- 
ditions will contain all independent variables at naturally or at artificially defined "low" 
conditions. The designs to be presented have all been arranged such that the first block 
will contain the treatment with all factors at their low conditions. This block is called 
the principal block. 

PROPERTIES OF RECOMMENDED DESIGNS 

Tabular Presentations 

In general, the estimation of all the coefficients of equation (6) is to be done by ma- 
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- trix inversion methods (ref. 16) or by a modified Doolittle method (ref. 17). Such com- 
putations are usually performed by a large programed machine or by a skilled operator 
using a desk calculator. On the other hand, the estimation of just the coefficients of the 
linear and interaction terms can be performed very simply by a procedure called Yates' 
algorithm (ref. 12, pp. 263-265). Its use permits the rapid evaluation of experiments 
performed in the method of steepest ascents and also for those experiments performed to 
evaluate interactions prior to the introduction of star points. 

A necessary condition for  using Yates' algorithm is that the observations of the frac- 
tional hypercube experiment must be written in Yates' order. A special notation is of as- 
sistance in establishing Yates' order. The notation is defined in terms of treatment com- 
binations. The independent variables a r e  named A, B, C, D, E, F, and so forth. For 
two levels of such a variable the symbol 1 is used for the lower level, and the associ- 
ated lower case letter is used for the upper level. A particular treatment is then repre- 
sented by the product of these symbols; for example, the treatment A, lower; B, upper; 
C, upper; D, lower; E, lower; F, upper; wouldbewritten 

. 

lbcl l f  = bcf 

The standardized variables assign a +1 to a variable at  the upper level and a -1 to a 
variable at the lower level, and the treatment would be specified by such coordinates. 
The preceding example with x1 associated with A, x2 with B, and so forth, is 

(X1, X2, X3, X4, X5, x6) = (-1, 1, 1, -1, -1, 1) = bcf 

With observations identified by the treaments f la t  produced them, the Yzites? order f m  
observations can be indicated by stating their order using the Yates' notation for treat- 
ments as in the first column of table 1. The tabular presentations of the designs will give 
the treatments in Yates' order. 

called contrasts, and division of the contrasts- by 2g-h produces 2g-h estimates of the 
parameters of equation (5). Just which parameters are estimated depends on the details 
of the design. The techniques used to establish the details of the designs and to identify 
the parameters estimated are given in the appendix. The details of the design cause 
some of the parameters to be aliased with each other; that is, some of the parameters 
cannot be separately estimated but only a linear combination of them is equal to a con- 
trast. However, with respect to all the parameters of equation (5), only the single- 
factor and two-factor interaction coefficients a re  of direct interest. 

In the case of the first-order experiments, if a two-factor interaction coefficient is 
aliased with a single-factor coefficient (if the sum of a two-factor coefficient and a single- 

Application of Yates' algorithm to the 2g-h observations produces 2g-h numbers 
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factor coefficient is estimated by a single contrast), then the two-factor coefficient is 
assumed to be zero. If a contrast does not estimate any combination of two-factor or  
lower order coefficients, the contrast will be given a name by listing the lowest order set 
of interaction coefficients that it does estimate. For example, table 17 lists a treatment 
bcde, and the Yates' computation would give an estimator of p2,, in the same row. 
From table 1 5  the full set of aliased parameters can be shown to be 0234, -Pi2459 pi479 
p1269 -'3457' -'2356, P3679 and - P i s 7  of which the lowest order set is P234, +Pi479 

+/3126, +p367' Those parameters, the estimates of which are confounded with block ef- 
fects, will be identified by attaching an asterisk to the parameters. 

The designs are identified by code numbers. For example, Plan 1/8; 7f, 8t/b; 
2b means that the design is a 1/8 replicate of a full factorial experiment with 7 factors, 
employing 8 treatments per block, and using 2 blocks. The order of presentation of the 
designs (tables 2 to 29) is the order of increasing numbers of factors. For a given num- 
ber of factors, a sequence of designs with blocks of 8 treatments is presented first, fol- 
lowed by a sequence of designs with blocks of 16 treatments. Within any sequence, the 
order is the order of increasing numbers of blocks. 

Use of Resolution 4 Designs in Fitting First-Order Model 

In general, the use of the first-order model as a prediction equation, with coeffi- 
cients estimated from an experiment, requires the assumption that all second-order pa- 
rameters are zero. However, circumstances might arise where the experimenter de- 
sired an approximate first-order predicting equation and ignored the existence of pos- 
sible nonzero two-factor interactions. He might then prefer a resolution 4 design to a 
resolution 3 design because the estimates of the first-order coefficients would not then 
be confounded with (biased by) two-factor interactions. 

Minimum-size designs of resolution 4 are shown for 4 factors by table 2, for 5 fac- 
tors  by table 5, and for 6 factors by table 10. Minimum-size designs of resolution 4 for 
7 and 8 factors were given by Natrella (ref. 18, p. 12-18), and these designs are also 
given in tables 28 and 29. Unfortunately, no success was achieved in trying to include 
the designs of tables 28 and 29 in the telescoping sequences of 7- and 8-factor blocked 
designs, that is, tables 21 to 27. However, the designs of tables 28 and 29 might there- 
fore be used for the very first trial of a Box-Wilson procedure, when the experimenter 
believed that he would be so far from a n  optimum condition that a first-order model 
would be a good enough approximation. After such a trial he could move to a new design 
center and then elect a design capable of being sequentially expanded by blocks into de- 
signs of higher order, that is, tables 21 or 25. 
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Conditions for Using Resolution 3 and Resolution 4 Designs in 

Estimating the  Second-Order Model 

If the experimenter has prior knowledge that some of the two-factor interactions are 
zero, he may be able to choose the labels for his factors so that the nonzero interaction 
parameters can be estimated from designs of less than resolution 5. The specific cases 
are listed: 

Table 2. - Plan 1/2; 4f; 8t/b; lb. - If one of the factors (for example X1) does not 
interact with the other factors, then all the remaining interactions are estimable (table 2). 
If X1 is noninteracting, the estimated parameters are Bo, p,, 8,, P,,, B3, 824, 823, 
and P4. 

Table 5. - Plan 1/2; 5f; 8t/b; 2b. - The factor believed most likely to interact with 
other factors should be labeled X4 because the plan (table 5) gives unconfounded esti- 
mates of 814, 824, P3,, and /345. If any one of X1, X2, X3, or X5 does not interact 
(for example, X1) then all the remaining two-factor interactions are estimable and the 

(/3$34 + P;,,), and /345. Under previously stated assumptions, the estimates of B,,, 
P345, and 8245 are assumed to be nothing more than random error. 

Table 10. - Plan 1/4; 6f; 8t/b; 2b. - If x1 does not interact with any other factor, 
and if x2 does not interact with x4, x5, and x6, then the parameters estimated are as 

p,,, 8,, 846, and the estimate of Vl2, + 8146 + 8234 + 8356) is assumed to be random 
error (table 10). 

estimated parameters are Po, 81, 829 8359 839 825, 823, 85, 849 814, 0249 83459 8349 02459 

809 81, 82, 836, P3, 845, 823, 86, 84, 835, 856, (8T24 +8f56 +f ig35 +8$46), 

Table 11. - Plan 1/2; 6f; 8t/b; 4b. - If the label X1 had been given to the most 
likely noninteracting factor in the design of table IO, t ie performance of the two aUg~ieiit- 
ing blocks of table 11 would result in a design with all interactions estimable under the 
minimal assumptions that P12, P,,, and 816 are zero. 

Table 13. - Plan 1/4; 6f; 16t/b; lb. - Assume that there are two groups of three 
factors and that each factor does not interact within its group. Give the factors within 
one group the labels X1, X2, and x 6  and label the factors of the other group X3, X4, 
and X5. Then all the nonzero two-factor interaction coefficients (one factor from each 
group) are estimable and are 813, 814, 815, 823, 824, 825, 836, 846, and 856 (table 13). 

Table 18. - Plan 1/4; 7f; 8t/b; 4b. - This plan (table 18) becomes a suitable second- 
order design under the assumptions that X1 does not interact with X3, X4, or x69 and 
that X2, X5, and X7 do not interact with each other. 

teractions if X7 is noninteracting with X1, X2, X3, X4, and x6, if X5 is noninteract- 
ing with xl, x2, x4, and x6, if x1 is noninteracting with X2, X4, and x69 and if 
X2 is noninteracting with x6 '  

Table 21. - Plan 1/8; 7f; 16t/b; lb. - This plan (table 21) estimates two-factor in- 
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Table 22. - Plan 1/4; 7f; 16 th ;  2b. - This plan (table 22) estimates all two-factor 
interactions if any one of xl, x2, x4, or x 6  does not interact with the other factors of 
this group. 

Table 26. - Plan 1/8; 8f; 1 6 t h ;  2b. - This plan (table 26) estimates all interactions 
if x 8  is noninteracting with xl, X2, X3, x5, and X7, and if X3 is noninteracting with 
X1, X2, X4, and x6. Thus the label x 8  should be given to the least interacting vari- 
able and the label X3 should be given to the next least interacting variable. 

Choice of Block Size 

The present investigation assumes that the experimenter will wish to perform a block 
of treatments, analyze the data, and then perform another block of treatments, and that 
the block effects arise during the interuption of the experimenting for analyzing data (fur- 
naces are overhauled, instruments are newly calibrated, etc. ). Under these assumptions, 
block sizes 8 and 16 are particularly appropriate for experiments on 4 to 8 factors. On 
the other hand, the physical situation could limit the experimenter to smaller block sizes. 
Under such limitations, other designs would have to be synthesized, and the synthesis 
could be done according to rules presented in reference 12. 

Another reason for using small block sizes is to protect against the.hazard of miss- 
ing values. If through accident, the observations from one or more treatments are miss- 
ing from a block, the whole block could be rerun, especially if it is small. On the other 
hand, only the missing treatments need be run, if the experimenter can say that no block 
effect will arise between the new runs and the block from which observations are missing. 
If the design is not severely fractionated (if the number of treatments is significantly 
larger than the number of parameters estimated), methods of estimating for missing 
values may be used (ref. 12 o r  19). 

Some attributes of the proposed designs are summarized in table 30. In the case of 
4 factors, all coefficients are estimable from two blocks of size 8 and a single block of 
size 16 is of no advantage in estimating the parameters of a second-order model. In the 
case of 7 factors, the attainment of a resolution 5 design requires 64 treatments for ei- 
ther blocks of size 8 or size 16, so that there is no clear advantage in using blocks of 
size 16. With 8 factors, the minimum first-order design requires 16 treatments, and 
this is the only block size presented for the problem with 8 factors. In the cases of 5 and 
6 factors, the choice of a block size of 8 or 16 is particularly complex. 

A comparison of the number of experimental units required in experimenting with 
block sizes of 8 and 16 for 5 and 6 factors is given in table 31. The column headed 
''Total number of units required" shows that for five factors, the break-even point for 
the two block sizes occurs at three repetitions of the first-order experiments. For 

20 



six factors, the break-even point occurs for five repetitions of the first-order experi- 
ments. In other words, if the experimenter believes that he will perform many cycles of 
experimenting with the method of steepest ascents, he should use a block size of 8 be- 
cause it uses a relatively smaller number of experimental units. On the other hand, tie 
block of size 16 uses a relatively smaller number of experimental units in the method of 
local exploration. The block size of 16 should be used if the experimenter believes he 
will spend relatively few cycles of experiments with the method of steepest ascents, less 
than three cycles with 5 factors or less than five cycles with 6 factors. 

Maximum economy could be sought with a mixed strategy. The experimenter could 
use the block of size 8 until his intuition told him that the first-order model might not be 
appropriate. He could then switch to the block of size 16. Its greater number of degrees 
of freedom for "lack of fit" would provide better information about the validity of the 
first-order model, and on switching to the method of local exploration, fewer experi- 
mental units would be needed to complete the interaction model than if the smaller block 
had been used. Thus with five factors, one or  two experiments of the method of steepest 
ascents should be performed with the small block size followed by a switch to the larger 
block. With six factors, the break-even point is not reached until the fifth design center. 
Furthermore, two blocks of size 8 (table 10) provide a resolution 4 design, whereas the 
single block of size 16 (table 13) is only a resolution 3 design. With six factors, the best 
strategy might consist of using blocks of size 8 (table 9) until interactions were suspected, 
at which point the design could be enlarged to that of table 10. If no new design center 
were desired, the design could then be augmented to that of table 11. If the design of 
table 10 had not shown significant interactions, experimenting at a new design center 
could continue with the design of table 9, but if significant interactions had been shown, 
the new experimenting should begin with the design of table 13. 

- 

CONCLUDING REMARKS 

The possibility of using rationally designed experiments with optimal statistical prop- 
erties was considered in terms of alloy development. The Box-Wilson methods and Box- 
Hunter designs of experiments are believed to be appropriate to the problem of finding 
optimum conditions. Within these concepts, the appropriate designs for the estimation 
of the coefficients of first-order terms in the method of steepest ascents and for the esti- 
mation of the coefficients of the two-factor interactions in the method of local exploration 
consist of blocked fractional two-level factorial designs. Within these considerations the 
following concepts were demonstrated: 

level fractional factorial blocked design that is minimally adequate to the purpose. 
1. The total experiment needed to estimate two-factor interactions can be a two- 
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2. The specific detailed design of the blocks can be such that just one of them is min- 

3. The blocks can be arranged in a '*telescoping" sequence such that observations 
imally adequate for  estimating the coefficients of the first-order model. 

from the first block a r e  retained and combined with observations from new blocks so that 
all acquired observations a r e  used cumulatively to estimate models of successively 
greater generality. 

4. The designs presented are appropriate to these criteria for  situations involving 
four to eight independent variables. Lesser or  greater numbers of variables might re- 
quire that experimental strategies be basically different from those of the present inves- 
tigation. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, March 31, 1967, 
129-03-01 -03-22. 
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APPENDIX - CONSTRUCTION OF DESIGNS AND IDENTIFICATION OF 

PARAMETERS ESTIMATED BY YATES' CONTRASTS 

Contrast Vectors 

3 The construction of a design begins with a listing of the treatments of a full 2 design 
for a block size of 8, or with a listing of the treatments of a full 2 design for a block 
size of 16. In either case, these treatments a re  listed in Yates' standard order (ref. 12). 
The standard order for a two-level factorial experiment on factors A, B, C, . . . is 
written in terms of the symbols for treatments, (l) ,  a, abc, and so forth. The standard 
order is determined by writing treatment symbols in the order, (l), a, b, ab. The treat- 
ments for which C is at the high level are then ordered by multiplying the preceding 
symbols by c and adding on the new list. The total list becomes (l), a, b, ab, c, ac, 
bc, abc. The treatments for which D is at the high level a r e  ordered by mutiplying the 
preceding list by d and appending the new symbols to the old list: (l), a, b, ab, c, ac, 
bc, abc, d, ad, bd, abd, cd, acd, bcd, abcd. 

The design and results of an experiment can  be exhibited by an a r ray  such as table 1. 
The first column presents the treatment in Yates' notation and order. The second column 
stands for the observed responses that correspond to treatments in the same row of the 
table. The third column presents a dummy variable that takes the value one. The a r ray  
consisting of those columns headed by X1, X2, X3, and X4 is called the design matrix. 
It gives the same information as is given by the column headed 'tTreatmentstv. 

The a r ray  beginning with the column headed Xo and including all columns to the 
right is called the matrix of independent variables. It gives the levels of those variables 
in design units and is therefore derivable from the treatment column as given in Sates' 
notation. 

garded as column vectors. A column headed by XlX2 is the result of multiplying ele- 
ments together from like rows of X1 and X2 (This rule of multiplying X1 by X2 to 
generate the column vector XlX2 differs from the definitions of scalar product and vec- 
tor product in conventional vector analysis. ) 

Inspection of table 1 shows that when any column X. is multiplied by itself, the re- 
sult is X = Xo. This result means that far more complicated multiplications can lead 
to simple results; for example, 

4 

As listed in table 1, the columns under Xo, X1, X1X2, and so forth, can be re- 

2 3 
j 

The preceding rule for the multiplication of the column vectors is used in construct- 
ing the detailed designs. 

23 



The column vectors give the linear combination of observations (provided that they 
are in Yates' order) that estimates the coefficient indicated by each column heading. Ob- 
viously, the grand mean is estimated by multiplying the observations by the quantities 

2 under Xo and summing and dividing by 2 , where in table 1, 2 = 4. 
If the observations are multiplied by the quantities under X1, their sum divided by 

9-l represents the average change in response between the upper and the lower levels 
of X1. Dividing the sum by 2 gives the change in response for a unit change in XI, and 
this quotient is the estimator bl of the coefficient pl of equation (5). 

table 1 and dividing the sum by 2 results in an estimate of the coefficient of the term in 
equation (5) that is identified by the column heading. This work is done automatically by 
Yates' algorithm with results presented in the order of the column headings of table 1. 

With A associated with XI, B associated with X2, and so forth, the sums resulting 
from the Yates' computation will be called A, B, ABC, and so forth. The sum associated 
with column Xo with be called T; with X1, A; with X2, B; with X1X2, AB; with 
X2X3X4, BCD; and so forth. Thus BCD is the dot or scalar product of the two vectors 
Y and X2X3X4. These sums (such as BCD) are also called contrasts. Performance of 

the full 2 experiment and computation according to Yates' algorithm thus furnishes esti- 
mates of coefficients of equation (5) as follows: 

2 

In a similar manner, multiplying the responses by the quantities of any column of 
1 

4 

bo = (1/2')T 

bl = (l/ZL)A 

b2 = (1/2')B 

b234 = (l/$)BCD, and so forth 

5 Factors - Blocks of 8 Treatments 

If the experiment is to consist of a one-fourth replicate, then X4 and X5 can be 
assigned only combinations of levels that constitute a three-factor full factorial experi- 
ment, namely, the levels of X1, X2, X3 and their interactions in table 1. Because all 
first-order coefficients must be estimated, X4 and X5 should be set equal only to two- 
factor or high order combinations. Such combinations may be chosen arbitrarily, except 
that each member of the resulting full set of defining contrasts must have a number of 
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factors equal to or greater than the desired resolution level R. Set X4 = -XS3 and 
X5 = X1X2X3. Then the full set  of defining contrasts is 

-x2x3x4 
xo = x4 2 = 

xo = x; = x1x2x3x5 

-'lX4'5 
xo = x4x5 2 2  = 

Negative signs a r e  attached to all defining contrasts containing an odd number of 
treatments and positive signs a r e  attached to all defining contrasts containing an even 
number of treatments. This convention ensures that the first block will be the principal 
block, that is, will contain the treatment with all factors at their low level. 

identical contrast vectors, namely, 
The properties of the design have now been fixed by the establishment of the four 

xo = -x2x3x4 = x1x2x3x5 = -x1x4x5 

The full set  of contrast vectors that thus f i x  the design a r e  called defining contrasts. 
They show what parameters a r e  confounded. For example, in table 4, the parameters 
that a r e  obviously estimated by the Yates' contrasts (on division by the number of treat- 
mentslare  Po, P i ,  P2, Pi,, P,, Pi39 P,,, and P123. Multiplying the contrasts that pro- 

interactions of order higher than two factor shows that the confounded sets of parameters 
a r e  as given in the following table: 

--:dn v I  nstvrn -;iiiat,es of these coefficients by the full set of defining contrasts and neglecting all 

I Product with defining contrasts Confounded coefficie I 
01 - 845' 
@2 - 834 
812 + 035 
p3 - @24 
h 3  + '25 

@23 +@15 - '4 

-'14 + '5 

25 



Although there a re  ah defining contrasts in the full set, only h a r e  independent, . I  

that is, starting with any h defining contrasts that a r e  independent, the full set can be 
generated by multiplying the independent ones in all combinations. For example, if 
-X2X3X4 and X1X2X3X5 are taken as the h = 2 independent defining contrasts, then 

the ah = 4 are obtained by annexing the dependent contrasts: 

and 

Under the specifications X4 = -X2X3 and X5 = X1X2X3, the levels of X4 and X 5  to be 
attached to the Yates' ordered treatments of X1, X2, and X3 can be obtained from 
table 1. The signs under X2X3 a r e  to be reversed, and they then show that X4 in 
Yates' order should take on the levels 1, 1, d, d, d, d, 1, 1. The signs under XlX2X3 
of table 1 are left unchanged, and the levels of X5 are 1, e, e, 1, e, 1, 1, e. These 
treatment levels a r e  then affixed to the Yates' levels for X1, X2, and X3, to obtain the 
treatments 1, ae, bde, abd, cde, acd, bc, and abce as listed in table 4. 

only a 2 experiment with h factors ignored. The independent.defining contrasts were 
formed by setting the ignored factors, one at a time, equal to some interactions among 
the factors not ignored. This procedure fulfills a rule announced by Daniel in reference 5, 
namely, "The ignored letters must be ones occurring in only one alias subgroup genera- 
tor [independent defining contrast]. *' 

If the experiment is to consist of a one-half replicate in two blocks, set  X5 = 
X1X2X3. Then Xo = X: = X1X2X3X5. The design and estimated effects a r e  given as 
Plan 1/2; 5f; 8 t h ;  2b (table 5). The defining contrasts of the single block were 
-X1X4X5, -X2X3X4, and X1X2X3X5, whereas the defining contrast for the half replicate 
is X1X2X3X5; therefore, -X1X4X5 and (-X1X4X5)(XlX2X3X5) = -X2X3X4 represent 
block effects. Thus in Plan 1/2; 5f; 8 t h ;  2b, the contrast that estimates 8145 + 8234 
also estimates the block effect. 

The full interaction experiment is given as Plan 1; 5f; 8t/b; 4b (table 6). Because 
it is a blocked design using blocks that were partitioned according to the fractional repli- 
cate contrasts of Plan 1/4; 5f; 8 t h ;  lb, the parameter estimates confounded with block 
effects a r e  -8234, -8145, and 01235. 

In other words, Yates' computation.is performed as if the 2g-h experiment were 
2 
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5 Factors - Blocks of 16 Treatments 

4 In table 1 consider a 2 experiment on X1, X2, X3, and X4 and set 

x5 = -x1x2x3x4 

Therefore 

xo = -x1x2x3x4x5 

The design is given as Plan 1/2; sf; 1 6 t h ;  l b  (table 7). The interaction model contains 
16 parameters, and these parameters can be estimated from the 16 responses of the de- 
sign, if it is performed in a single block. 

6 Factors - Blocks of 8 Treatments 

The first-order model contains 7 parameters and the minimum fractional factorial 
design contains 8 treatments. Consider the first 8 treatments of table 1 corresponding 
to  a 2 experiment on X1, X2, and X3. Let X4 = -X1X2, X5 = -X2X3 and x 6  = 
+X1X2X3. Then the the full set of defining contrasts is as given for the 1/8 replicate in 
table 8. These defining contrasts lead to the treatments and estimated effects given as 
Plan 1/8; 6f; 8th;  lb of table 9. 

ing fractional factorial designs is given in table 8. The corresponding treatments and 
estimated parameters are given in tables 10 and 11. The interactions confounded with 
blocks in the full 2 experiment (table 12) a r e  the same as the defining contrasts used to 
to construct the first block, namely, -X1X2X4, -X2X3X5, x1X2x&, X1X3X4X5, 
-x3x4x6,  -X1x&, and X2X4X5X6. The coefficients confounded with blocks a r e  there- 
fore the corresponding coefficients (with asterisks) in table 12. 

3 

The sequence of defining contrasts used to obtain the next two larger of the telescop- 

6 

6 Factors - Blocks of 16 Treatments 

Assume that the experiment is performed on one block of 16 treatments. With ref- 
erence to table 1 for an experiment on X1, X2, X3, and X4, let X5 = -X3X4, and X6 = 
-X1X2. Then 
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2 
X o = X 5 =  -x3x4x5 

1 2x6 
2 xo = X6 = -x x 

The required treatments are given by Plan 1/4; 6f; 16 th ;  l b  (table 13), and the pa- 

Performance of a second block of 16 treatments according to Plan 1/2; 6f; 16t/b; 2b 

4 rameters estimated on dividing Yates' contrasts by 2 are also listed in table 13. 

(table 14) results in 32 Yates' contrasts, which on dividing by 2 result in estimates of the 
the parameters listed in table 14. 

table 13, the defining contrasts were -X1X2X6, -X3X4X5, and their product 
x1x2x3x4x5x6. . Therefore, in table 14 where the only defining contrast is 
x1x2x3x4x5x6, the interactions -x1x& and -X3X4X5 a r e  confounded with the block 
effect and aliased with each other, so that the estimator of the block effect is 

5 

In table 14, the defining contrast of the fractional replicate is x1x2x3x4x5x6' In 

7 Factors - Blocks of 8 Treatments 

The first-order model contains 8 parameters and the minimum fractional factorial 
design therefore contains 8 treatments. Consider the first 8 treatments of table 1 as an 
experiment on X1, X2, and X3. Let X4 = -X X , X5 = -X X , x 6  = -X X , and X7 = 

X1X2X3. The corresponding complete set of defining contrasts for the 1/16 replicate is 
listed in table 15. The defining contrasts for a telescoping sequence of designs consist- 
ing of the 1/16, 1/8, 1/4, and 1/2 replicates are also given in table 15. The correspond- 
ing designs and estimated parameters a r e  given in tables 16 to 19. 

1 2  1 3  2 3  

7 Factors - Blocks of 16 Treatments 

Let X5 = -X1X4, X6 = X1X2X4, X7 = X2X3X4; then the complete set of defining con- 
trasts are a8 listed for the 1/8 replicate of table 20. The defining contrasts for telescop- 
ing designs consisting of 1/4 and 1/2 replicates are also given in table 20. The associ- 
ated designs and estimated parameters a r e  given in tables 21 to  23. 
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8 Factors - Blocks of 16 Treatments 

The first-order model contains nine parameters and the minimum fractional factorial 
design therefore contains 16 treatments. Let X5 = -X1X4, x6 = X1X3X4, X, = X2X3X4, 
X8 = -X2X3; then the complete set of defining contrasts for the 1/16 replicate is given by 
table 24. The complete sets of defining contrasts for the telescoping designs consisting 
if 1/8 and 1/4 replicates a r e  also given in table 24. The associated designs and esti- 
mated parameters are given by tables 25 to 27. 
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Table 2.= - P L A N  1/2; 4; 8t/b; l b  - 

1 
1 
1 
1 

IXo = xix2x3x4*l 

Block I Treatment I Estimated effects 

cd 63 

abcd 84 

ac  O13 + 824 
bc p23 + p14 

(1) 
ad 
bd 
ab 

TABLE 3.a-PLAN 1; 4f; 8t/b; 2b- 

R = 5  

[Block confounding, X1X2X3X4.] 
- 
)lock 

- 
1 
2 
2 
1 

2 
1 
1 
2 

2 
1 
1 
2 

1 
2 
2 

1 - 

'reatment 

(1) 
a 
b 
ab 

C 

ac  
bc 
abc 

d 
ad 
bd 
abd 

cd 
acd 
bcd 

abcd 

:stimated effects 
(b) 

80 
p1 
82 
p12 

8 3  
@13 
p23 
p123 

84  
@14 
p24 
@124 

p34 
8134 
p234 

p1234 
aRefs. 12 (p. 429) and 18 (p. 12-10) 
bAsterisk denotes confounding with 

blocks. 
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TABLE 4. -PLAN 1/4; 5f; 8t/b; lb - 

ae 
bde 
abd 

cde 
acd 
bc 
abce 

TABLE 5. -PLAN 1/2; 5f; 8t/b; 2b - 

R = 4  

[Xo = X1X2X3X5; block confounding, 

- x2x3x4*l ~ 

h e a t  m ent Block 

1 
1 
2 
2 

2 
2 
1 
1 

2 
2 
1 
1 

1 
1 
2 
2 

aAsterisk 

(1) 
ae 
be 
ab 

ce 
ac 
bc 
abce 

d 
ade 
bde 
abd 

cde 
acd 
bcd 
abcde 

blocks. 
denotes 

Zstimated effects 
(a) 

BO 
4 
p2 
4 2  + p35 

p3 

85 

84  

p13 + 825 
823 + @15 

@14 
824 
@124 + 8345 

634 

G 3 4  + G 4 5  
845 

8134 + @245 

confounding with 
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TABLE 8. - DEFINING CONTRASTS, 6 FACTORS ON 

I 
_ _ _ _ _ ~  

3lock Treatment 
I 

1 (1) 
1 adf 
1 bdef 
1 abe 

1 c ef 
1 acde 
1 bcd 
1 abcf 

BLOCKS OF 8 TREATMENTS 

Dcfining contrasts 

1/8 Replicate 1/4 Replicate 1/2 Replicate 

x1x2x3x6 
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TABLE 15. - DEFINING CONTRASTS WITH 7 FACTORS ON BLOCKS OF 8 TREATMENTS 

1/16 Replicate 

'x1x$4 

" lX3' 5 

'x2x3x 6 

c1x2x3x7 

'2x3x4x 5 

' 1x3x4x6 

-x3x4x7 

-xZxsx7 

' 1x2x5x6 

-x1x6x7 

Defining contrasts 

1/8 Replicate 

.x1x3x5 

' 1x$3x7 

' lX3'4'6 

-x2x gX 7 

-' 4x 5x6 

Zx 4x SX 7 

1/4 Replicate 

TABLE 16. -PLAN 1/16; 7f; 8t/b; lb  - 

R = 3  

[Defining contrasts given by table 15.1 

Block Treatment 

ab ef 

I Estimated effects 

1/2 Replicate 
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TABLE 20. - DEFINING CONTRASTS WITH 7 FACTORS 

Source 

ON BLOCKS OF 16 TREATMENTS 

Defining contrasts 

1/8 Replicate 1/4 Replicate 

“1X$4X6 

-x 1x$3x5x7 

-x3x4x5xsx7 

1/2 Replicate 

-x3x4x5x6x7 

TABLE 21. -PLAN 1/8; 7f; 1 6 t h ;  l b  - 

R =  3 

[Defining contrasts given in 
table 20.l 

Block 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

reatment 

(1) 
aef 
bfg 

cg 
acefg 
bcf 
abce 

def g 
a& 
bde 
abdf 

cdef 
acd 
bcdeg 
abcdfg 

Mimated effects 

00 
B1 - 845 
6?, O56 
p12 + p46 

03 

-857 

813 + 867 
823 p47 

84 - h 5  
-B5 + 814 + 826 
p24 + h 6  + 837 
86 - 825 

834 + O27 
-835 
87 
O36 + 817 1 
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TABLE 22.a - PLAN 1/4; 7f; 16th; 2b - R = 4 

[Defining contrasts given in table 20; block confounding, -X1X4X5.] 

%lock 

1 
2 
1 
2 

1 
2 
1 
2 

2 
1 
2 
1 

2 
1 
2 
1 

rreatment 

'Ref. 4 (p. 20). 

~~ ~ ~ 

Sstimated effects 

'0 
'1 
'2 

'3 

-'57 

'4 

'12 + '46 

'13 
'2 3 

'14 + '26 
'24 + '16 
'6 

'34 
'134 + '236 
'234 + '136 
'36 

block 

- 
2 
1 
2 
1 

2 
1 
2 
1 

1 
2 
1 
2 

1 
2 
1 
2 - 

rreatment 

~ 

eg 
aef 
bef 
abeg 

ce 
acefg 
bcefg 
abce 

def g 

ade 
bde 
abdef g 

cdef 
acdeg 
bcdeg 
abcdef 

~~~ 

htimated effects 
cb) 

'5 

-037 

'35 

-87 

'45 

'15 
'25 

-'27 
"17 

':45 + 'i56 
'245 + '156 
'56 

-'67 
-'247 - '167 
-'147 - '267 
-047 

'Asterisk denotes confounding with blocks. 
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TABLE 26. - PLAN 1/8; 8f; 1 6 t h ;  2b - R = 3 

[Defining contrasts given in table 24; block confounding, -X1X4X5.] 
- 
llock 

1 
2 
1 
2 

1 
2 
1 
2 

2 

1 
2 
1 

2 
1 
2 
1 - 

'reatment 

(1) 
afg 
bgh 
abf h 

cfgh . 
ach 
bcf 
abcg 

df 

adg 
bdfgh 
abdh 

cdgh 
acdfh 
bcd 
abcdfg 

Mimated effects ,lock 

2 
1 
2 
1 

2 
1 
2 
1 

1 

2 
1 
2 

1 
2 
1 
2 - 

'r eatm ent 

eg 
aef 
beh 
abef gh 

cefh 
acegh 
bcefg 
abce 

def g 

ade 
bdefh 
abdegh 

cdeh 
acdefgh 
bcdeg 
abcdef 

Estimated effects 
(a) 
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TABLE 30. - ATTRIBUTES OF RECOMMENDED DESIGNS 

. 

‘able 

2 
3 

4 
5 
6 

7 

9 
10 
11 
12 

13 
14 

16 
17 
18 
19 

21 
22 
23 

25 
26 
27 

28 

29 

bplication ?actors, 
g 

4 
4 

5 
5 
5 

5 

6 
6 
6 
6 

6 
6 

7 
7 
7 
7 

7 
7 
7 

8 
8 
8 

7 

8 

rreatments 
per block 

8 
8 

8 
8 
8 

16 

8 
8 
8 
8 

16 
16 

8 
8 
8 
8 

16 
16 
16 

16 
16 
16 

16 

16 

$umber 
of 

blocks 

1 
2 

1 
2 
4 

1 

1 
2 
4 
8 

1 
2 

1 
2 
4 
8 

1 
2 
4 

1 
2 
4 

1 

1 

lesolution, 
R 

4 
5 

3 
4 
5 

5 

3 
4 
4 
5 

3 
5 

3 
3 
3 
5 

3 
4 
5 

3 
3 
5 

4 

4 

‘Only unconfounded two-factor interaction estimators are counted. 

Wmber of 
wo-factor 
iteractions, 
g(g - 1)/2 

6 
6 

10 
10 
10 

10 

15 
15 
15 
15 

15 
15 

21 
21 
21 
21 

21 
21 
21 

28 
28 
28 

21 

28 

Number of 
estimable 
two-factor 
nteractions 

(a) 

0 
6 

0 
4 
10 

10 

0 

9 
15 

9 
15 

0 
0 

11 
21 

1 
15 
21 

c 
11 
28 

0 

0 

Q 



TABLE 31. - COMPARISON OF TOTAL TREATMENTS (EXPERIMENTAL UNITS) 

REQUIRED WHEN FIRST BLOCK IS PERFORMED TO ESTIMATE FIRST-ORDER 

MODEL AT STATED NUMBER OF DESIGN CENTERS AND INTERACTION 

EXPERIMENT IS PERFORMED ONLY AT FINAL DESIGN CENTER 
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Strategy 
0 Single factor 
0 Box-Wilson 

b 
I1 

X I  

Figure 1. - Strategies for experimental attainment of optimum conditions. 

Figure 2. - Cube and star designs. 
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Start optimum seeking 
experiments wi th design 
center determined by 
prior knowledge. 

Experiment for second- 
order model at best 
tiesign center. 

Experiment for 
first-order model. I 

Explore r is ing 
ridge for new 
design center. 

Figure 3. - Box-Wilson methods. 
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